
MATLAB® Application Deployment
Web Example Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Application Deployment Web Example Guide

© COPYRIGHT 2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2008 Online only First edition

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

How to Use This Guide

1
About This Guide . 1-2

Who Should Use This Guide? . 1-3

List of Commonly Used Software and Preliminary
Set-Up Information . 1-4
MATLAB Programmer . 1-4
Intergration Experts (Business Service Developer and

Front-End Developer) . 1-4
Internal Analyst . 1-5

Anatomy of a MATLAB Web Application

2
The MATLAB Web Application Environment 2-2

The Lifecycle Of a Deployed MATLAB Web
Application . 2-4
The MATLAB Programmer . 2-6
The Business Service Developer . 2-7
The Front-End Developer . 2-7
The Internal Analyst . 2-7

MATLAB Programmer Tasks

3
Programming in MATLAB . 3-2

Returning Data Types . 3-3

iii

Deploying MATLAB Code With the Builders 3-6

Business Service Developer Tasks

4
Working with the Business Service Layer 4-2

About the Business Service Layer . 4-2
Creating a DAO For Deployment . 4-5
Hosting a DAO On a Web Server . 4-20

Front End Developer Tasks

5
Working With the Front End Layer 5-2

Creating a Web Figure On a JSP Page 5-5
Working With Static Images . 5-8
Displaying Complex Data Types Including Arrays and

Matrices . 5-12
Using Web Services . 5-19

Internal Analyst Tasks

6
Working With the Content . 6-2

Examples of Internal Analyst Tasks 6-3

iv Contents

Sources for More Information

A
Other Examples . A-2

MATLAB® Builder™ JA . A-2
MATLAB® Builder™ NE . A-2

Index

v

vi Contents

1

How to Use This Guide

About This Guide (p. 1-2) A brief description of the Example
Guide and how it can help you

Who Should Use This Guide? (p. 1-3) A brief description of the skill sets
of potential users of this guide, and
recommended reading paths

List of Commonly Used Software
and Preliminary Set-Up Information
(p. 1-4)

Software typically needed when
using this guide and associated
preliminary set-up information

1 How to Use This Guide

About This Guide
The MATLAB® Compiler™ and builders (MATLAB Builder NE™, MATLAB
Builder JA™, and MATLAB Builder EX™) take MATLAB functions and
expose them in a language-specific manner that can be deployed to users
who do not have MATLAB installed.

When deploying a MATLAB application in a Web-based environment, the
number of possible architectural configurations, programming languages,
operating systems, Web servers, and frameworks can be intimidating,
especially if you are new to Web deployment.

The goal of the MATLAB Application Deployment Web Example Guide is to
provide a series of templates demonstrating how to successfully implement
the possible configurations available in the Web deployment space.

Use this guide to:

• Learn about the components of a Web deployment environment

• Review an architectural configuration of a typical Web deployment
implementation and how the components in the configuration work
together.

• Reference specific models for performing the most common to the most
complex deployment tasks, such as:

- Creating a deployable function

- Hosting the component delivered by the MATLAB Programmer using
J2EE and .NET Web technologies

- Displaying complex data types (arrays, matrices) on a Web page

- Enabling scalability through stateless services used with MATLAB
Builder JA or MATLAB Builder NE

• Deploying applications through implementation of SOAP Web services

1-2

Who Should Use This Guide?

Who Should Use This Guide?
Many skill sets are involved in deploying MATLAB® applications.

These skills sets include the MATLAB Programmer (usually a scientist
or engineer), a Business Services Developer and Front-End Developer
(programmers responsible for interfacing with languages and frameworks
such as Java and .NET, as well as developing Web page content), and the end
user, who consumes the final product.

Since it is sometimes confusing to determine who should perform what task in
a large installation, this guide’s structure is role-based. In other words, the
tasks that belong to each role are listed in separate sections or chapter. This
organization enables more novice users to focus only on the tasks related to
their area of expertise and enables advanced users to customize a list of tasks
pertinent to their own area of expertise.

1-3

1 How to Use This Guide

List of Commonly Used Software and Preliminary Set-Up
Information

In this section...

“MATLAB Programmer” on page 1-4

“Intergration Experts (Business Service Developer and Front-End
Developer)” on page 1-4

“Internal Analyst” on page 1-5

Many of the examples in this guide utilize the software listed in this section.
It is not likely you will use all of the software listed here.

MATLAB Programmer

• MATLAB®

• Financial Toolbox

• MATLAB® Compiler™

• MATLAB® Builder™ JA

• MATLAB Builder NE

Intergration Experts (Business Service Developer and
Front-End Developer)

• MCR (MATLAB Compiler Runtime)

• Microsoft® Visual Studio™ 2005 or other supported IDE

• Microsoft IIS 5

• Microsoft .NET Framework 2.0 or later

• Java™ SDK (Software Developer Kit) 1.5 or later

• Java JRE (Java Runtime Environment) 1.5 or later

• Apache Tomcat 5 Web Server

• Apache Axis2 Web Services Engine

1-4

List of Commonly Used Software and Preliminary Set-Up Information

• PHP server-side hypertext pre-processor 5.2.3 or later

• NUSOAP PHP class add-in

Internal Analyst

• Microsoft Office™ 2003 or higher

• Microsoft Office Web Services Toolkit

MATLAB,
Compiler

MCR,
Java web server
(e.g., Tomcat),
Soap server
(e.g., Axis)

Java web server,
home grown apps
(e.g., Excel),
third party apps
(e.g., Siebel)

Web browser
(Firefox, IE,
Safari)

Web browser
(Firefox, IE,
Safari)

MCR, IIS,
Soap server (IIS)

MCR, Java web server
(e.g., Tomcat),
Soap server (e.g., Axis),
home grown apps
(e.g., Excel),
third party apps
(e.g., Siebel)

MCR, IIS,
Soap server (IIS),
home grown apps
(e.g., Excel),
third party apps
(e.g., Siebel)

IIS,
home grown apps
(e.g., Excel),
third party apps
(e.g., Siebel)

Excel

Business

S
o

ft
w

ar
e

R
o

le
s

Integration Experts End User End-to-end User

MATLAB
Programmer

General
Developer

Business Service
Developer

External
User

Front End
Developer

Internal
Analyst

Java
Builder

.NET
Builder

1-5

1 How to Use This Guide

1-6

2

Anatomy of a MATLAB Web
Application

The MATLAB Web Application
Environment (p. 2-2)

An overview of the deployment
environment and tools used to work
within it

The Lifecycle Of a Deployed
MATLAB Web Application (p. 2-4)

How M-code becomes a deployable
language-agnostic enterprise
application

2 Anatomy of a MATLAB Web Application

The MATLAB Web Application Environment
The fundamental goal of the Application Deployment products (MATLAB
Compiler and the builders) is to enable work that has been accomplished
within MATLAB to be deployed outside the MATLAB environment. This is
accomplished with the MATLAB Compiler Runtime (MCR), a set of libraries
that runs encrypted MATLAB code.

In a Web application, the builder products allow integration of the MCR at
the server tier level. This enables end users to execute MATLAB applications
over the Web without installing client software.

Web Figures is a client and server side technology that further extends
this capability by enabling end users to interact with a MATLAB Figure in
much the same way as they use an axis within MATLAB. The Web Figures
functionality of MATLAB Builder JA allows users limited to Web access the
ability to dynamically interact with MATLAB figures.

2-2

The MATLAB Web Application Environment

MATLAB expert

No IT experience

No access to IT systems

Develops model

Uses the builder tools to create a
component that is given to the
business service developer

Creates reusable service that is scalable

Creates front end applications

Customer of the company

User of the site

Employer of the company

User of tools and sites

Role ResponsibilitiesKnowledge Base

MATLAB
Programmer

B
u

si
n

es
s

MATLAB expert

Creates services out of components
received from the MATLAB programmer

Service consumer responsible for
presentation and usability

Develops model

Uses the builder tools to create a
component that is given to the
business service developer

Creates reusable service that is scalable

Creates front end applications

General
Developer

E
n

d
-t

o
-E

n
d

 D
ev

el
o

p
er

Business Service
Developer

No MATLAB experience

Creates services out of components
received from the MATLAB programmer

In
te

g
ra

ti
o

n
 E

xp
er

ts

External
User

External user over the internet
through firewalls

No MATLAB or IT experience

Front End
Developer

Service consumer responsible for
presentation and usability

No MATLAB experience

Internal
Analyst

Internal user over the network

Little to no MATLAB or IT experience

E
n

d
 U

se
r

MATLAB Web Application Deployment Roles

2-3

2 Anatomy of a MATLAB Web Application

The Lifecycle Of a Deployed MATLAB Web Application

In this section...

“The MATLAB Programmer” on page 2-6

“The Business Service Developer” on page 2-7

“The Front-End Developer” on page 2-7

“The Internal Analyst” on page 2-7

How does a single piece of M-code become a deployable, portable, robust,
scalable Web application? Through skillful deployment by a number of people
in an organization, each playing distinct and significant roles.

The following diagrams depict the supported implementation and
architectures available when using MATLAB application deployment products

2-4

The Lifecycle Of a Deployed MATLAB Web Application

Deployed Application Tier Interactions

2-5

2 Anatomy of a MATLAB Web Application

External end user
via browser

(no MCR) Firewall

Internet

Firewall

Load
balancer

Load
balancer

Internal end user
via browser

(no MCR)

Multi-tier large implementation

Single-tier small implementation

External facing web
servers (no MCR)

Internal facing
web server

(behind firewall)

Middle tier servers

Front end and
middle tier servers

Front end tier servers

Internal end user
via browser (no MCR)

Router

Internal end user
via browser (no MCR)

End-to-end
MATLAB programmer

MCR

MCR

MCR

The MATLAB Programmer
The first phase in a deployed application’s life begins when code is written
in MATLAB by a MATLAB Programmer, who has the objective in mind of
sharing it with other people either within or outside of his organization. To
accomplish this objective, the programmer uses MATLAB Compiler. MATLAB
Compiler makes M-code usable by people in vastly different environments
who may not have knowledge of MATLAB or the M language.

When MATLAB Builder JA (for Java language) or MATLAB Builder NE (for
Microsoft .NET framework), are installed along with MATLAB Compiler, M
functions can be encrypted and wrapped in Java or .NET interfaces. The
MATLAB Programmer takes these deployable components and hands them
off to the Business Service Developer.

2-6

The Lifecycle Of a Deployed MATLAB Web Application

The Business Service Developer
At this point in the deployment lifecycle, integration is usually required in
order to make the deployed application work with the existing applications in
the organization. The Business Services Developer installs these deployable
applications along with the proper version of the MCR, and converts MATLAB
data types to native language data types so they can be used without any
coupling to MATLAB in other tiers of the installation architecture. When the
Java or .NET component is called, it will instantiate the MCR to execute the
underlying MATLAB code. Once these services are exposed (either as Web
services or through an API) Front End Developers can connect to them and
use them.

The Front-End Developer
Front-End Developers are typically responsible for user visible functionality
and know little about under-the-covers implementation. Their primary
concern is the stability and security of the organization’s data within the
confines of a firewall. Once the Front End Developer creates some mechanism
for exposing the application functionality to the end user, it is up to the end
user to complete the lifecycle by interacting with the application to perform
some task or solve some business problem. External Users typically achieve
this through a Web browser.

The Internal Analyst
Internal Analysts may use the Web site or may interact with the business
tier directly. In this case, an example of a common activity would be when a
financial analyst accesses a business tier Web service and a complex Excel
model. Or, they access an internal Web site, performing specific tasks not
available to their customers.

2-7

2 Anatomy of a MATLAB Web Application

2-8

3

MATLAB Programmer
Tasks

Programming in MATLAB (p. 3-2) Examples of tasks to perform while
programming in MATLAB

Deploying MATLAB Code With the
Builders (p. 3-6)

How to deploy your MATLAB code
using the MATLAB builders

3 MATLAB Programmer Tasks

Programming in MATLAB

MATLAB expert

No IT experience

No access to IT systems

Develops model

Uses the builder tools to create a
component that is given to the
business service developer

MATLAB
Programmer

MATLAB is a interpreted programming environment. Functions can be
executed directly at the command prompt or through an editor in saved files.
Methods may be created, having their own unique inputs and outputs. When
deploying a MATLAB function to other programming environments, such as
.NET and Java, you must contain your M-code within functions. MATLAB
does not allow inline scripts to be used.

The following examples demonstrate how to perform basic MATLAB
Programmer tasks for deployed applications; they do not attempt to represent
every way a MATLAB programmer can interface with MATLAB. In later
parts of this guide, we demonstrate how to use various data types in deployed
applications. For more specific information about any of these data types,
see the documentation for the product you are using (MATLAB Compiler,
MATLAB Builder JA, or MATLAB Builder NE.)

Creating a Deployable MATLAB Function

Virtually any calculation that can be created in MATLAB can be deployed,
providing it is contained in a function. For example,

>> 1 + 1

can not be deployed.

However,

function result = addSomeNumbers()
result = 1+1;

end

3-2

Programming in MATLAB

can be deployed, since the calculation now resides in a function.

Taking Inputs Into a Function

You typically pass inputs to a function. Any primitive data type can be used
as an input into a function.

To pass inputs, put them in parentheses. For example:

function result = addSomeNumbers(number1, number2)
result = number1 + number2;

end

Returning Data Types
MATLAB allows many different deployable data types. This section contains
examples of how to work with figures. For in-depth explanation of how to
work with MATLAB primitive data types, see MATLAB® External Interfaces
documentation.

MATLAB Figures
Often, you are dealing with images displayed in a figure window, and not just
string and numerical data. Deployed Web applications can support figure
window data in a number of ways. By using the Web Figures infrastructure
(see “Deploying a Java™ Component Over the Web”), MATLAB Builder JA
marshalls the data for you.

Alternatively, you can take a snapshot of what is in the figure window at a
given point and convert that data into the raw image data for a specific image
type. This is particularly useful for streaming the images across the web.

Returning Data From a Web Figure Window

Web Figures is a MATLAB Builder JA feature that enables you to embed
dynamic MATLAB figures onto a Web page through a Builder JA component.
This feature will be available in the future in MATLAB Builder NE. This
concept can be used with any data in a figure window.

3-3

3 MATLAB Programmer Tasks

In the following example, the figure should be closed before the code is
exited so that the figure does not “pop up,” or appear later, in the deployed
application. You do not need to specify any reorientation data when using
Web Figures. If the figure is attached to the rest of the infrastructure, it will
automatically pass, resize, and reorient accordingly.

%returns a web figure reference containing the
%data from the figure window
function resultWebFigure = getWebFigure

f = figure;
surf(peaks);
resultWebFigure = webfigure(f);
close(f);

end

Returning a Figure as Data

This approach is typically used for instances where Web figures can’t be used,
or in a stateless application.

%We set the figure not to be visible since we are
%streaming the data out
%Notice how you can specify the format of the bytes,
% .net uses unsigned bytes (uint8)
% java uses signed bytes (int 8)
%This function allows you to specify the image format
%such as png, or jpg
function imageByteData = getSurfPeaksImageData(imageFormat)

f = figure;
surf(peaks);
set(f, `Visible', `off');
imageByteData = figToImStream(f, imageFormat, `uint8');
close(f);

end

Reorienting a Figure and Returning It as Data

Sometimes you want the function to change the perspective on an image
before returning it. This can be accomplished like this:

3-4

Programming in MATLAB

%We set the figure not to be visible since we are
%streaming the data out
%Notice how you can specify the format of the bytes,
% .net uses unsigned bytes (uint8)
% java uses signed bytes (int 8)
%This function allows you to specify the image format
%such as png, or jpg
function imageData =

getImageDataOrientation(width, height, rotation,
elevation, imageFormat)

f = figure(`Position', [0, 0, width, height]);
surf(peaks);
view([rotation, elevation]);
set(f, `Visible', `off');
imageData = figToImStream (f, imageFormat, `uint8');
close(f);

end

3-5

3 MATLAB Programmer Tasks

Deploying MATLAB Code With the Builders
Writing the M-code is only the first step when deploying an application.
You must next determine how the application is structured. Although you
might have a large amount of M-code that needs to run within a component,
typically only a small number of entry points need to be exposed to the calling
application. It is best to determine these entry points and to make sure
all inputs and outputs are necessary before deploying a Web application.
Typically the best practice is to ensure the M-files that contain a method have
the same name as the M-file for all entry point methods.

For examples using MATLAB’s Deployment Tool (deploytool), see “Getting
Started” in the MATLAB Builder JA documentation and “Getting Started” in
the MATLAB Builder NE documentation.

It is also possible to use the MATLAB® Compiler™ mcc command to build
components. See the mcc command reference page in any of the builder
products for more information.

3-6

4

Business Service Developer
Tasks

Working with the Business Service
Layer (p. 4-2)

Examples of tasks to perform while
at the business service layer

4 Business Service Developer Tasks

Working with the Business Service Layer

Creates reusable service that is scalable

Business Service
Developer

No MATLAB experience

Creates services out of components
received from the MATLAB programmer

In this section...

“About the Business Service Layer” on page 4-2

“Creating a DAO For Deployment” on page 4-5

“Hosting a DAO On a Web Server” on page 4-20

Note For comprehensive end-to-end implementations of the concepts in this
chapter, see Appendix A, “Sources for More Information”.

About the Business Service Layer
Most software contains a business service layer: a set of interfaces, business
objects (and logic to manipulate them), and mechanisms for data access that
run the core business.

A typical business service layer contains the following sub-layers:

• Interfaces — Typically the business service layer can implement several
different interface types which all interact with common data elements and
common business objects, all using the same business logic. Software and
related services used to access business data from native or Web clients
include:

- SOAP services

- Remoting interfaces

- HTTP services

- Java Servlets

4-2

Working with the Business Service Layer

- JSPs

- ASPX (for .NET)

• Business Objects and Logic — This is business data expressed in the form
of objects along with the logic to manipulate the objects. This data is loaded
by a combination of inputs from the interfaces and data from the data
access layer.

• Data Access — The data access layer is the link to all lower level data such
as databases, where access into a deployed application would typically take
place. Your generated component fits into this category, as it can be used
as a mechanism through which to access the MATLAB Compiler Runtime
(MCR).

4-3

4 Business Service Developer Tasks

Elements Of the Business Service Layer

4-4

Working with the Business Service Layer

Depending on the size and complexity of an implementation some of these
elements can overlap. The examples in this documentation will assume direct
communication from the interfaces into the DAO DAO (data access object or
wrapper utility) that we create.

All examples in this document are coded as stateless (with the exception of
the MATLAB Builder JA™ Web Figures example), and are scalable. Servers
can be added or augmented by a load balancer for performance tuning.

Creating a DAO For Deployment
To access business objects in .NET and Java environments, a data access class
or classes must be written.

The code in these examples is representative of what exists within the data
access section of an application since it bridges across MATLAB data and data
types and Java and .NET data types.

Note In these examples, a fake component generated using the MATLAB
builder products called deploymentExamples is used. Assume it has been
imported.

Initializing a Component
Use these examples as a framework for initializing a component.

Java

DeploymentExamples deployment = null;
try
{
deployment = new DeploymentExamples ();

//**************
//Use the deployment code here
// (see examples below)
//**************

}

4-5

4 Business Service Developer Tasks

catch(MWException mw_ex)
{
mw_ex.printStackTrace();

}
finally
{
deployment.dispose();

}

.NET

DeploymentExamples.DeploymentExamples deployment = null;
try
{

deployment = new DeploymentExamples.DeploymentExamples();

//******************************
//**Use your deployment code here
//** (See examples below)
//******************************

}
finally
{
deployment.Dispose();
}

Interacting With a Component
You interact with a component by passing inputs to a deployed application
or producing MATLAB output from a deployed application. All of these
examples fit where the comment block resides in “Initializing a Component”
on page 4-5 and the same component class is used. The Java and .NET
Builder infrastructure handles data marshalling when passing parameters
to a component. Data conversion rules can be found in the MATLAB builder
documentation. If a specific data type is required, you can use the MWArray
objects and pass in the appropriate data type.

4-6

Working with the Business Service Layer

Passing Inputs To a Deployed Application. Some of the ways to pass
inputs to a deployed applications are demonstrated in these examples:

Converting an Integers To a MATLAB Data Type In Java

int n = 3;
MWNumericArray x = new MWNumericArray(n, MWClassID.DOUBLE);

Converting an Integers To a MATLAB Data Type In .NET

int n = 3;
MWNumericArray x = new MWNumericArray(n, true);

Converting Array Data To a MATLAB Data Type In Java

Arrays can be converted to several different MATLAB data types. An example
converting a String array into a cell array follows:

//Create the array of data
String[] friendsArray1 = { "Jordan Robert",

"Mary Smith",
"Stacy Flora",
"Harry Alpert"};

int numberOfArrayElements1 = friendsArray1.length;
int numberOfArrayColumns1 = 1;

//Create the MWCellArray to store the data

MWCellArray cellArray1 = new MWCellArray(numberOfArrayColumns1,
numberOfArrayElements1);

//Iterate through the array and add the elements to the cell array.

for(int i = 1; i<friendsArray1.length+1; i++)
{
cellArray1.set(i, friendsArray1[i-1]);

}

4-7

4 Business Service Developer Tasks

Converting Array Data To a MATLAB Data Type In .NET

Arrays can be converted to several different MATLAB data types. An example
converting a String array into a cell array follows:

String[] array = { "Jordan Robert",
"Mary Smith",
"Stacy Flora",
"Harry Alpert"};

int numberOfArrayElements = array.Length;
int numberOfArrayColumns = 1;

MWCellArray cellArray = new MWCellArray(numberOfArrayColumns,
numberOfArrayElements);

for (int i = 1; i < array.Length + 1; i++)
{
cellArray[i] = array[i - 1];

}

Converting a List To a MATLAB Data Type In Java

A list can be converted to several different MATLAB data types. An example
converting a List of Strings into a cell array follows:

//Create a list of data
List friendsList = new LinkedList();
friendsList.add("Jordan Robert");
friendsList.add("Mary Smith");
friendsList.add("Stacy Flora");
friendsList.add("Harry Alpert");

int numberOfListElements = friendsList.size();
int numberOfListColumns = 1;

//Create a MWCellArray to store the data

MWCellArray cellArray2 = new MWCellArray(numberOfListColumns,
numberOfListElements);

4-8

Working with the Business Service Layer

//Iterate through the list adding the elements to the cell array.

Iterator friendsListItr = friendsList.iterator();
for(int i = 1;friendsListItr.hasNext(); i++)
{
String currentFriend = (String)friendsListItr.next();

cellArray2.set(i, currentFriend);
}

Converting a List To a MATLAB Data Type In .NET

A list can be converted to several different MATLAB data types. An example
converting a List of Strings into a cell array follows:

List<String> list = new List<String>();
list.Add("Jordan Robert");
list.Add("Mary Smith");
list.Add("Stacy Flora");
list.Add("Harry Alpert");

int numberOfArrayElements = list.Count;
int numberOfArrayColumns = 1;

MWCellArray cellArray = new MWCellArray(numberOfArrayColumns,
numberOfArrayElements);

int i = 1;
foreach (String currentElement in list)
{
cellArray[i] = currentElement;
i++;

}

Converting a Maps (Name Value Pairs) To a MATLAB Data Type In
Java

In Java it is common to have maps of data (name value pairs). The
corresponding .net data type is Dictionary. The most similar data type in
MATLAB is the structure. Here is an example where you convert a map of
people’s names into a MATLAB structure.

4-9

4 Business Service Developer Tasks

//First we create a Java HashMap (java.util.HashMap).
Map firendsMap = new HashMap();
friendsList.put(Jordan Robert , new Integer(3386));
friendsList.put(Mary Smith , new Integer(3912));
friendsList.put(Stacy Flora , new Integer(3238));
friendsList.put(Harry Alpert , new Integer(3077));

//Now we set up the MATLAB Structure that we will fill with this data.

int numberOfElements = firendsMap.size();
int numberOfColumns = 1;
String[] fieldnames = { name , phone };
MWStructArray friendsStruct = new MWStructArray(numberOfElements,
numberOfColumns,
fieldnames);

//Now we iterate through our map, filling in the structure as we go.

Iterator friendsMapItr = friendsMap.keySet().iterator();
for(int i = 1; friendsMapItr.hasNext(); i++)
{
String key = (String)friendsMapItr.next();
friendsStruct.set(fieldnames[0], i, new MWCharArray(key));
friendsStruct.set(fieldnames[1], i (Integer) friendsMap.get(key));

}

Converting a Dictionaries (Name Value Pairs) To a MATLAB Data
Type In .NET

In .NET it is common to have dictionaries of data (name value pairs). The
corresponding Java data type is a map. The most similar data type in
MATLAB is the structure. Here is an example where you convert a dictionary
of people’s names into a MATLAB structure.

Dictionary<String, int> dictionary = new Dictionary<String, int>();
dictionary.Add("Jordan Robert", 3386);
dictionary.Add("Mary Smith", 3912);
dictionary.Add("Stacy Flora", 3238);
dictionary.Add("Harry Alpert", 3077);

4-10

Working with the Business Service Layer

int numberOfElements = dictionary.Count;
int numberOfColumns = 1;
String[] fieldnames = { "name", "phone" };
MWStructArray output = new MWStructArray(numberOfElements,

numberOfColumns,
fieldnames);

int i = 1;
foreach (String currentKey in dictionary.Keys)
{
output[fieldnames[0], i] = currentKey;
output[fieldnames[1], i] = dictionary[currentKey];
i++;

}

Getting MATLAB Output From a Deployed Application. This code
resides in the try block for an initialized component (see “Initializing a
Component” on page 4-5). Various MATLAB outputs are demonstrated by
the following examples:

Getting Numerics From a Java Component

Object[] numericOutput = null;
MWNumericArray numericArray = null;
try
{
numericOutput = deployment.getNumeric(1);
numericArray = (MWNumericArray)numericOutput[0];
int i = numericArray;

}
finally
{
MWArray.disposeArray(numericArray);

}

Getting Numerics From a .NET Component

MWNumericArray result = (MWNumericArray)deployment.getNumeric();
int resultInt = result.ToScalarInteger();

4-11

4 Business Service Developer Tasks

Getting Strings From a Java Component

Object[] stringOutput = null;
MWCharArray stringArray = null;
try
{
stringOutput = deployment.getString(1);
stringArray = (MWCharArray) stringOutput [0];
String s = stringArray;

}
finally
{
MWArray.disposeArray(stringArray);

}

Getting Strings From a .NET Component

MWCharArray result = (MWCharArray)deployment.getString();
String resultString = result.ToString();

Getting Numeric Arrays From a Java Component

Object[] numericArrayOutput = null;
MWNumericArray numericArray1 = null;
try
{
numericArrayOutput = deployment.getNumericArray(1);
numericArray1 = (MWNumericArray)numericArrayOutput[0];
int[] array = numericArray1.getIntData();

}
finally
{
MWArray.disposeArray(numericArray1);

}

Getting Numeric Arrays From a .NET Component

MWNumericArray result = (MWNumericArray)deployment.getNumericArray();
Double[] doubleArray = (Double[])result.ToVector(MWArrayComponent.Real);

4-12

Working with the Business Service Layer

Getting Character Arrays From a Java Component

Object[] stringArrayOutput = null
MWCharArray mwCharArray = null;
try
{
stringArrayOutput = deployment.getStringArray(1);
mwCharArray = ((MWCharArray)stringArrayOutput[0];
char[] charArray = new char[mwCharArray.numberOfElements()];
for(int i = 0; i < charArray.length; i++)
{
char currentChar = ((Character)mwCharArray.get(i+1)).charValue();
charArray[i] = currentChar;

}
}
finally
{
MWArray.disposeArray(mwCharArray);

}

Getting Character Arrays From a .NET Component

Note that since MWCharArray doesn’t have a ToVector method, it is necessary
to iterate through and get a single dimension for the output.

MWCharArray result = (MWCharArray)deployment.getStringArray();
char[,] resultArray = (char[,])result.ToArray();
char[] outputArray = new char[resultArray.GetLength(1)];
for (int i = 0; i < resultArray.GetLength(1); i++)
{
outputArray[i] = resultArray[0, i];

}

Getting Byte Arrays From a Java Component

Object[] byteOutput = null;
MWNumericArray numericByteArray = null;

try
{
byteOutput = deployment.getByteArray(1);

4-13

4 Business Service Developer Tasks

numericByteArray = (MWNumericArray)byteOutput[0];
byte[] byteArray = numericByteArray.getByteData();
}
finally
{
MWArray.disposeArray(numericByteArray);

}

Getting Byte Arrays From a .NET Component

MWNumericArray result = (MWNumericArray)deployment.getByteArray();
byte[] outputByteArray = (byte[])result.ToVector(MWArrayComponent.Real);

Getting Cell Arrays From a Java Component

This example shows how to iterate through a cell array and put the elements
into a list or an array.

Object[] cellArrayOutput = null;
MWCellArray cellArray = null;
try
{
cellArrayOutput = deployment.getCellArray();
cellArray = (MWCellArray)cellArrayOutput[0];

List listOfCells = new LinkedList();
Object[] arrayOfCells = new Object[cellArray.numberOfElements()];

for(int i = 0; i < cellArray.numberOfElements(); i++)
{
Object currentCell = cellArray.getCell(i + 1);

listOfCells.add(currentCell);
arrayOfCells[i] currentCell;

}
}
finally
{
MWArray.disposeArray(cellArray);

}

4-14

Working with the Business Service Layer

Getting Cell Arrays From a .NET Component

This example shows how to iterate through a cell array and put the elements
into a list or an array.

MWCellArray result = (MWCellArray)deployment.getCellArray();

List<Object> outputList = new List<Object>();
Object[] outputArray = new Object[result.NumberOfElements];
for (int i = 0; i < result.NumberOfElements; i++)
{
outputArray[i] = result[i + 1];
outputList.Add(result[i + 1]);

}

Getting Structures From a Java Component

Object[] structureOutput = deployment.getStruct(1);
MWStructArray structureArray = (MWStructArray)structureOutput[0];

try
{
Object[] structureOutput = deployment.getStruct(1);
structureArray = (MWStructArray)structureOutput[0];

Map mapOfStruct = new HashMap();

for(int i = 0; i < structureArray.fieldName().length(); i++)
{
String keyName = structureArray.fieldNames()[i];
Object value = structureArray.getField(i + 1);

mapOfStruct.put(keyName, value);
}
}
finally
{
MWArray.disposeArray(structureArray);

}

4-15

4 Business Service Developer Tasks

Getting Structures From a .NET Component

MWStructArray result = (MWStructArray)deployment.getStruct();

Dictionary<Object, Object> output = new Dictionary<Object, Object>();
for (int i = 0; i < result.FieldNames.Length; i++)
{
output.Add(result.FieldNames[i],

result.GetField(result.FieldNames[i]));
}

Getting Images From a Java Component Using Web Figures

For more information about Web Figures, see “Deploying a Java™ Component
Over the Web” in the MATLAB® Builder™ JA User’s Guide.

Object[] webFigureOutput = null;
MWJavaObjectRef webFigureReference = null;

try
{
webFigureOutput = deployment.getWebFigure(1);
webFigureReference = (MWJavaObjectRef)webFigureOutput[0];

WebFigure f = (WebFigure)webFigureReference.get();
}
finally
{
MWArray.disposeArray(webFigureOutput);
MWArray.disposeArray(webFigureReference);

}

//forward the request to the View layer (response.jsp)
RequestDispatcher dispatcher =

request.getRequestDispatcher(/response.jsp);
dispatcher.forward(request, response);

4-16

Working with the Business Service Layer

Note This code will not do anything if executed directly. It needs a
response.jsp to produce output.

Getting Image Data From a Web Figure In a Java Component

This example shows how to get image data from a Web Figure object, as well
as how to specify the image type and the orientation of the image.

For more information about Web Figures, see “Deploying a Java Component
Over the Web” in the MATLAB® Builder™ JA User’s Guide.

Object[] webFigureByteOutput = null;
MWJavaObjectRef webFigureByteReference = null;

try
{
webFigureByteOutput = deployment.getWebFigure(1);
webFigureReference = (MWJavaObjectRef)webFigureByteOutput[0];

WebFigure f = (WebFigure)webFigureByteReference.get();

Map<String, Object> params = new HashMap();
params.put(rotation , 30);
params.put(elevation , 30);
params.put(width , 500);
params.put(height , 500);
params.put(imageFormat , png);

byte[] webFigureBytes = f.render(params);
}
finally
{
MWArray.disposeArray(webFigureByteOutput);
MWArray.disposeArray(webFigureByteReference);

}

4-17

4 Business Service Developer Tasks

Getting Raw Image Bytes From an Image In a Java Component

Object[] byteImageOutput = null;
MWNumericArray numericImageByteArray = null;

try
{
byteImageOutput =

deployment.getImageDataOrientation(1, 500, 500, 30, 30, png);
numericImageByteArray = (MWNumericArray_byteImageOutput[0];
byte[] imageByteArray = numericImageByteArray.getByteData();
}
finally
{
MWArray.disposeArray(numericImageByteArray);

}

Getting Raw Image Bytes From an Image In a .NET Component

MWArray width = 500;
MWArray height = 500;
MWArray rotation = 30;
MWArray elevation = 30;
MWArray imageFormat = "png";

MWNumericArray result =
(MWNumericArray)deployment.getImageDataOrientation(
height,
width,
elevation,
rotation,
imageFormat);

byte[] outputByteArray =
(byte[])result.ToVector(MWArrayComponent.Real);

Getting a Java Buffered Image In a Java Component

Object[] byteImageOutput = null;
MWNumericArray numericImageByteArray = null;

try

4-18

Working with the Business Service Layer

{
byteImageOutput =

deployment.getImageDataOrientation(1, 500, 500, 30, 30, png);
numericImageByteArray = (MWNumericArray_byteImageOutput[0];
byte[] imageByteArray = numericImageByteArray.getByteData();

BufferedImage bufferedImage =
ImageIO.read(new ByteArrayInputStream(imageByteArray));

}
catch(IOException io_ex)
{
io_ex.printStackTrace();
}
finally
{
MWArray.disposeArray(numericImageByteArray);

}

Getting a .NET Image In a .NET Component

An example of how to get a .NET image back from a byte array follows:

MWArray width = 500;
MWArray height = 500;
MWArray rotation = 30;
MWArray elevation = 30;
MWArray imageFormat = "png";

MWNumericArray result =
(MWNumericArray)deployment.getImageDataOrientation

(height, width, elevation, rotation, imageFormat);
byte[] byteArray = (byte[])result.ToVector(MWArrayComponent.Real);

MemoryStream ms = new MemoryStream(myByteArray, 0, myByteArray.Length);
ms.Write(myByteArray, 0, myByteArray.Length);

Image outputImage = Image.FromStream(ms, true);

4-19

4 Business Service Developer Tasks

Hosting a DAO On a Web Server
After you construct your DAO, you need to expose the wrapped service(s)
via the Web.

There are many things to consider with regards to exposing the service.
For example, a JSP is not suited for binary streaming since the J2EE
infrastructure already wraps the output stream. In each of the following
sections, some basic concepts that can be used in a realistic system are
demonstrated. Typically, the response is not simply dumped to the output
stream, but instead wrapped in a more complex XML document or Web
service. Using these templates as a guide, you can extend these examples
using similar patterns. For each of these examples, refer to the DAO class
defined in “Creating a DAO For Deployment” on page 4-5. This DAO takes
care of MATLAB specific data conversion and data clean-up tasks.

Hosting the DAO With a Servlet
Note that the DAO is initialized in the init method of the Servlet. When we
create and access a component created with the builders, an instance of the
MCR is created that the component communicates with in order to handle
MATLAB tasks. This can incur much overhead if performed every time a user
accesses the Servlet. Alternately, by performing initialization in the init
method, it is performed once for all sessions using the Servlet. If you want to
rebuild each time, place the call within a doget method.

It is also possible that neither of the above approaches will meet your needs
since they initialize once per Servlet, rather then once per server. If this is
an issue, use a singleton object that is instantiated in a Context Listener
class (a class that extends ServletContextListener). This class has a
contextInitialized method and a contextDestroyed method which get
called automatically when the server starts or is stopped. This allows all of
your applications to access the singleton and access component objects as
needed.

1 Create a staging directory, if one does not exist, under the directory where
your component resides on your Web server. The DAO must reside in
this directory, in a Java archive file (JAR), on the class path so it can
be imported.

2 Initialize the DAO using the following examples as templates:

4-20

Working with the Business Service Layer

Initializing the DAO For a Servlet

package examples;

import java.io.IOException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;
import javax.servlet.ServletConfig;
import java.util.*;
import com.mathworks.toolbox.javabuilder.webfigures.WebFigure;

public class ExamplesServlet extends HttpServlet
{
Examples examples = null;

public void init(ServletConfig config) throws ServletException
{

super.init(config);

try
{
examples = new Examples();

}
catch(Exception e)
{
e.printStackTrace();

}
}

public void destroy()
{

super.destroy();
examples.dispose();

}

protected void doGet(final HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException

4-21

4 Business Service Developer Tasks

{
try
{

//***********************************
//**All code using the DAO would go here
//**Any of the below examples could be pasted here
//***********************************

int integer = examples.getIntFromMWNumericArray();
response.getOutputStream().println("int: " + integer);

}
catch(Exception e)
{
e.printStackTrace();
response.getOutputStream().println("ERROR "+ e.getMessage());

}
}

}

Numeric

int integer = examples.getIntFromMWNumericArray();
response.getOutputStream().println("int: " + integer);

String

String string = examples.getStringFromMWCharArray();
response.getOutputStream().println("String: " + string);

Numeric Array

int[] intArray = examples.getIntArrayFromMWNumericArray();
response.getOutputStream().println("Numeric Array: ");
for(int i = 0; i<intArray.length;i++)
{
response.getOutputStream().println("Array index("+ i+"): " +

intArray[i]);
}

Character Array

char[] charArray = examples.getCharArrayFromMWCharArray();

4-22

Working with the Business Service Layer

response.getOutputStream().println("Char Array: ");
for(int i = 0; i<charArray.length;i++)
{
response.getOutputStream().println("Array index("+ i +"): " +

charArray[i]);
}

Cell Array To Array

Object[] array = examples.getArrayFromCellArray();
for(int i = 0; i < array.length; i++)
{
response.getOutputStream().println("Array index("+ i+"): " +

array[i]);
}

Cell Array To List

List list = examples.getListFromCellArray();
Iterator listItr = list.iterator();
while(listItr.hasNext())
{
response.getOutputStream().println("List Item: " + listItr.next());

}

Structure To Map

Map map = examples.getMapFromStruct();
response.getOutputStream().println("Structure Array: ");
Iterator mapKeyItr = map.keySet().iterator();
while(mapKeyItr.hasNext())
{
String mapKey = (String)mapKeyItr.next();
Object mapValue = map.get(mapKey);
response.getOutputStream().println("KEY: " + mapKey + " " +

"VALUE: " + mapValue);
}

Byte Array

byte[] byteArray = examples.getByteArrayFromMWNumeric();

4-23

4 Business Service Developer Tasks

response.getOutputStream().println("Byte Array: ");
for(int i = 0; i<byteArray.length;i++)
{
response.getOutputStream().print(byteArray[i]);

}
response.getOutputStream().write(byteArray);

Images (Web Figures)

This example is very similar to what can be found in “Deploying a Java
Component Over the Web”, but this example also uses our DAO.

HttpSession session = request.getSession();

WebFigure userPlot = (WebFigure)session.getAttribute("UserPlot");

// if this is the first time doGet has been called for this session,
// create the plot and WebFigure object
if (userPlot== null)
{
userPlot = examples.getWebFigureFromMWJavaObjectRef();

// store the figure in the session context
session.setAttribute("UserPlot", userPlot);

// bind the figure's lifetime to the session
session.setAttribute("UserPlotBinder",

new MWHttpSessionBinder(userPlot));
}

Web Figure To Bytes

byte[] byteArrayFromWebFigure = examples.getByteArrayFromWebFigure();
response.getOutputStream().write(byteArrayFromWebFigure);

Raw Image Bytes

byte[] rawImageBytes = examples.getImageByteArrayFromMWNumericArray();
response.getOutputStream().write(rawImageBytes);

4-24

Working with the Business Service Layer

Raw image Bytes With Reorientation

Note This example allows you to do similar functionality to what Web
Figures (see “Deploying a Java Component Over the Web”) performs, but in
a manual implementation. It is one of many ways you can implement this
functionality in a stateless manner.

int height = Integer.parseInt(request.getParameter("height"));
int width = Integer.parseInt(request.getParameter("width"));
int elevation = Integer.parseInt(request.getParameter("elevation"));
int rotation = Integer.parseInt(request.getParameter("rotation"));
String imageFormat = request.getParameter("imageFormat");
byte[] rawImageBytes =

examples.getImageByteArrayFromMWNumericArrayWithOrientation(
height, width, elevation,
rotation, imageFormat);

response.getOutputStream().write(rawImageBytes);

3 Inside the staging directory you created at the start of this procedure,
create a WEB-INF directory.

4 Inside the WEB-INF directory, create two additional directories:

• classes

• lib

5 Place all of the class files (including the DAO created in “Creating a DAO
For Deployment” on page 4-5) into the class directory within of the
appropriate package directories that exist.

6 Copy the component JAR file into the lib folder.

7 Create a web.xml file in the WEB-INF folder.

This file provides the Web server with a valid path into your code and
defines the entry point into that code. Use this template as an example:

4-25

4 Business Service Developer Tasks

Example of a web.xml File Used In a Java Servlet Component

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD
Web Application 2.3//EN" "http://java.sun.com/dtd/web-app_2_3.dtd">
<web-app>

<servlet>
<servlet-name>ExamplesServlet</servlet-name>
<servlet-class>examples.ExamplesServlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>ExamplesServlet</servlet-name>
<url-pattern>/ExamplesServlet</url-pattern>

</servlet-mapping>
</web-app>

The following URL accesses this Servlet with the configuration described
above:

http://localhost:8080/Examples/ExamplesServlet

Note the Examples string in the URL, since the JAR is named
Examples.jar. Using this string sets up the correct server context and is a
customizable attribute within the console of many Web servers.

8 Using the java -jar command, bundle the directories you created into a
WAR (Web archive) and place it in your Web server’s component directory.

Note Some Web servers require you to register the application before it is
accessible, usually by referencing the WAR from within the administrator’s
console.

Hosting a DAO Using a Java Web Service
More and more companies are hosting services on the Web, often times with
SOAP (Simple Object Access Protocol). This exposes business functions
through simple services. Each of these services performs a specific task.

4-26

Working with the Business Service Layer

Since SOAP is an established standard that is supported by many different
languages and third party applications, it is extremely versatile. You can
use a SOAP Web service directly in Excel with no prior knowledge of the
service’s implementation. Multiple language support makes SOAP suitable
for use with primitive data types.

Although these primitives can be wrapped in a number of complex object
structures, the examples in this section will cover fundamental use cases that
should be the same, regardless of data structure and business objects.

In this section, you will learn how to create basic Java objects that handle
business logic, while Apache Axis2 performs the mechanics involved with
turning the logic a web service and exposing it. Alternatively, you can start
by using WSDL (The Web Service Definition Language — the definition of
your service) and generate Java from that. Afterwards, you can customize the
Java with your business logic, or change the WSDL manually in a number of
other ways to meet your needs.

Setting Up the Root Web Service Class. Since Axis2 supports POJO’s
(Plain Old Java Objects) we will create a shell class to contain all the service
methods:

package examples;

public class ExamplesWebService
{
//***************************
//**Place service methods here
//**For our examples we will only

//**be taking in and returning
//**primitive values
//***************************
}

Interacting With the DAO. Some examples of how to use the DAO with
various data types follow:

Numeric

public int getInt()

4-27

4 Business Service Developer Tasks

{
Examples examples = new Examples();
int integer = examples.getIntFromMWNumericArray();
examples.dispose();
return integer;

}

String

public String getString()
{
Examples examples = new Examples();
String string = examples.getStringFromMWCharArray();
examples.dispose();
return string;

}

Numeric Array

public int[] getIntArray()
{
Examples examples = new Examples();
int[] intArray = examples.getIntArrayFromMWNumericArray();
examples.dispose();
return intArray;

}

Character Array

public char[] getCharArray()
{
Examples examples = new Examples();
char[] charArray = examples.getCharArrayFromMWCharArray();
examples.dispose();
return charArray;

}

Byte Array

public byte[] getByteArray()
{

4-28

Working with the Business Service Layer

Examples examples = new Examples();
byte[] byteArray = examples.getByteArrayFromMWNumeric();
examples.dispose();
return byteArray;

}

Raw Image Bytes

Raw Image Bytes
public byte[] getImageByteArray()
{
Examples examples = new Examples();
byte[] rawImageBytes = examples.getImageByteArrayFromMWNumericArray();
examples.dispose();
return rawImageBytes;

}

Raw Image Bytes With Reorientation

public byte[] reorientAndGetImageByteArray(int height,
int width,
int elevation,
int rotation,
String imageFormat)

{
Examples examples = new Examples();
byte[] rawImageBytes =
examples.getImageByteArrayFromMWNumericArrayWithOrientation(

height,
width,
elevation,
rotation,
imageFormat);

examples.dispose();
return rawImageBytes;

}

Deploying the Web Service. To deploy the Web service, follow these steps:

4-29

4 Business Service Developer Tasks

1 Create a staging directory, if one does not exist, and copy the Examples
DAO class created in “Creating a DAO For Deployment” on page 4-5 and
the Web service class created in into it.

2 Create a lib directory and copy your deployed component into it.

3 Create a meta-inf folder and, inside it, create a services.xml file with
these contents.

<service>
<parameter name="ServiceClass"
locked="false">examples.ExamplesWebService</parameter>
<operation name="getInt">
<messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

</operation>
<operation name="getString">
<messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

</operation>
<operation name="getIntArray">
<messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

</operation>
<operation name="getCharArray">
<messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

</operation>
<operation name="getByteArray">
<messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

</operation>
<operation name="getImageByteArray">
<messageReceiver
class="org.apache.axis2.rpc.receivers.RPCMessageReceiver"/>

</operation>
</service>

The services.xml file tells Axis2 which methods to expose, and what
mechanism to use to expose them.

4-30

Working with the Business Service Layer

4 Copy all of the files into a WAR (Web archive) file and place them in the
axis2 component directory (axis2/WEB-INF/services). Use the java
-jar command but give the output file an .aar extension rather than a
.jar extension.

5 You should now see your service running in the Axis console. From the
console, note the URL for the WSDL file. You will use this URL in other
applications, to communicate with your Web service.

Hosting a .NET DAO With ASPX

Initializing the DAO. Before a DAO can be used, it must be initialized. The
basic template to initialize a .NET DAO looks like this:

using System;
using System.Data;
using System.Configuration;
using System.Web;
using System.Web.Security;
using System.Web.UI;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;
using System.Web.UI.HtmlControls;

public partial class _Default : System.Web.UI.Page
{

protected void Page_Load(object sender, EventArgs e)
{

Examples.Examples examples = new Examples.Examples();

//***************************************
//**This is where the examples would be pasted in
//***************************************
//for Examples:
int integer = examples.getIntFromMWNumericArray();
Response.Write("int: " + integer);

examples.dispose();
}

}

4-31

4 Business Service Developer Tasks

Interacting With the DAO. Some examples of how to use the DAO with
various data types follow:

Numeric

int integer = examples.getIntFromMWNumericArray();
Response.Write("int: " + integer);

String

String stringResult = examples.getStringFromMWCharArray();
Response.Write("String: " + stringResult);

Double Array

double[] doubleArray = examples.getDoubleArrayFromMWNumericArray();
Response.Write("Double Array: ");
for (int i = 0; i < doubleArray.Length; i++)
{
Response.Write("Array index(" + i + "): " + doubleArray[i]);

}

Character Array

char[] charArray = examples.getCharArrayFromMWCharArray();
Response.Write("Char Array: ");
for (int i = 0; i < charArray.Length; i++)
{
Response.Write("Array index("+ i +"): " + charArray[i]);

}

Cell Array To Array

Object[] array = examples.getArrayFromCellArray();
for (int i = 0; i < array.Length; i++)
{
Response.Write("Array index("+ i+"): " + array[i]);

}

4-32

Working with the Business Service Layer

Cell Array To List

List<Object> list = examples.getListFromCellArray();
foreach (Object currentObj in list)
{
Response.Write("List Item: " + currentObj);

}

Structure

Dictionary<Object, Object> dictionary =
examples.getDictionaryFromStruct();

Response.Write("Structure Array: ");
foreach (Object currentKey in dictionary.Keys)
{
Response.Write("Key: " + currentKey + " Value: " +

dictionary[currentKey]);
}

Byte Array

byte[] byteArray = examples.getByteArrayFromMWNumericArray();
Response.Write("Byte Array: ");
for (int i = 0; i < byteArray.Length; i++)
{
Response.Write(byteArray[i]);

}
Response.BinaryWrite(byteArray);

Raw Image Bytes

byte[] rawImageBytes = examples.getImageByteArrayFromMWNumericArray();
Response.BinaryWrite(rawImageBytes);

Raw Image Bytes With Reorientation

Note This example allows you to do similar functionality to what Web
Figures performs, but in a manual implementation. It is one of many ways
you can implement this functionality in a stateless manner.

4-33

4 Business Service Developer Tasks

int height = Convert.ToInt32(Request.Params.Get("height"));
int width = Convert.ToInt32(Request.Params.Get("width"));
int elevation = Convert.ToInt32(Request.Params.Get("elevation"));
int rotation = Convert.ToInt32(Request.Params.Get("rotation"));
String imageFormat = Request.Params.Get("imageFormat");
byte[] rawImageBytes =

examples.getImageByteArrayFromMWNumericArrayWithOrientation(
height, width, elevation,

rotation, imageFormat);
Response.BinaryWrite(rawImageBytes);

Deploying the ASPX. You deploy an ASPX using the Publish functionality
in Microsoft Visual Studio. Visual Studio puts all of your code, along with any
code your project depends upon, in a directory.

Hosting a DAO Using a .NET Web Service

Setting Up the Root Web Service Class. When creating web services
within .NET, simply create a new Web site (or use an existing site), and add
an item of type Web Service to it. This will generate the root class in which
you place your methods.

Interacting With the DAO. Each of these methods would be placed in the
web service class as methods.

Numeric

[WebMethod]
public int getInt()
{
Examples.Examples examples = new Examples.Examples();
int integer = examples.getIntFromMWNumericArray();
examples.dispose();
return integer;

}

String

[WebMethod]
public String getString()

4-34

Working with the Business Service Layer

{
Examples.Examples examples = new Examples.Examples();
String stringResult = examples.getStringFromMWCharArray();
examples.dispose();
return stringResult;

}

Double Array

[WebMethod]
public double[] getDoubleArray()
{
Examples.Examples examples = new Examples.Examples();
double[] doubleArray = examples.getDoubleArrayFromMWNumericArray();
examples.dispose();
return doubleArray;

}

Double Matrix

Since .NET Web services can’t support multidimensional arrays, convert what
is returned from MATLAB Builder NE into a jagged array, as follows:

[WebMethod]
public double[][] getDoubleMatrix(int argMagic)
{

Examples.ExamplesImpl examples =
new Examples.ExamplesImpl();

double[,] doubleMatrix =
examples.getDoubleMatrixFromMWNumericArray(argMagic);

int arraySize = (int)doubleMatrix.GetUpperBound(0) + 1;
double[][] outputMatrix = new double[arraySize][];
for (int i = 0;

i < (int)doubleMatrix.GetUpperBound(0) + 1; i++)
{

double[] subArray = new double[arraySize];
for (int j = 0;

j < (int)doubleMatrix.GetUpperBound(1) + 1; j++)

4-35

4 Business Service Developer Tasks

{
subArray[j] = doubleMatrix[i, j];

}
outputMatrix[i] = subArray;

}

examples.dispose();
return outputMatrix;

}

Character Array

[WebMethod]
public char[] getCharArray()
{
Examples.Examples examples = new Examples.Examples();
char[] charArray = examples.getCharArrayFromMWCharArray();
examples.dispose();
return charArray;

}

Byte Array

[WebMethod]
public byte[] getByteArray()
{
Examples.Examples examples = new Examples.Examples();
byte[] byteArray = examples.getByteArrayFromMWNumericArray();
examples.dispose();
return byteArray;

}

Raw Image Bytes

[WebMethod]
public byte[] getImageByteArray()
{
Examples.Examples examples = new Examples.Examples();
byte[] rawImageBytes = examples.getImageByteArrayFromMWNumericArray();
examples.dispose();

4-36

Working with the Business Service Layer

return rawImageBytes;
}

Raw Image Bytes With Reorientation

[WebMethod]
public byte[] getImageByteArrayWithOrientation(int height,

int width,
int elevation,
int rotation,
String imageFormat)

{
Examples.Examples examples = new Examples.Examples();
byte[] rawImageBytes =

examples.getImageByteArrayFromMWNumericArrayWithOrientation(
height,

width,
elevation,
rotation,
imageFormat);

examples.dispose();
return rawImageBytes;

}

Deploying the Web Service. Visual Studio 2005 does all of the work
involved with generating Web service artifacts. Once you’ve created the above
methods, just run the service and you’ll see a tester page that shows you the
location of the WSDL, and then allows you to test each method.

4-37

4 Business Service Developer Tasks

4-38

5

Front End Developer Tasks

Working With the Front End Layer
(p. 5-2)

Examples of tasks to perform while
at the front end layer

5 Front End Developer Tasks

Working With the Front End Layer

Creates front end applications

Front-End
Developer

Service consumer responsible for
presentation and usability

No MATLAB experience

In this section...

“Creating a Web Figure On a JSP Page” on page 5-5

“Working With Static Images” on page 5-8

“Displaying Complex Data Types Including Arrays and Matrices” on page
5-12

“Using Web Services” on page 5-19

Note For comprehensive end-to-end implementations of the concepts in this
chapter, see Appendix A, “Sources for More Information”.

In well-designed multi-tier application architectures, the front end layer
presents data to the end user and validates the user’s input. This is
accomplished by accessing data acquired at lower level architectural tiers to
the user and taking in user inputs, validating them, and then sending them to
the lower level tiers for processing.

The data within this layer reside on servers that are almost always outside of
the corporate firewall and therefore, accessible by everyone. Consequently,
security and stability are integral to the front-end layer, and it is important
to isolate implementation details outside of this layer so people cannot
determine how your site is architected.

A well designed front end layer will have data access, translation and
validation, and presentation functions separated into individual logical code
sections. This increases an application or Web site’s maintainability since you
can change where the data originates or the format that it arrives in without
the changing user visible code.

5-2

Working With the Front End Layer

A typical front end layer contains the following sub-layers:

Elements Of the Front End Layer

• Data Access — The data access sub-layer is used to pull data in from middle
tier services like databases, where access into a deployed application would
typically take place. Among the technologies used to transmit data at this
sub-layer are:

5-3

5 Front End Developer Tasks

- Remoting interfaces

- SOAP services

- XML over HTTP protocol

• Translation/Validation — Data is passed from the data access sub-layer
to the translation sub-layer and translated into objects used for data
presentation. Since these objects represent what the user sees (rather
then the underlying business logic) they are very lightweight and easy to
maintain. This is also where any validation would occur to ensure that
values are in a proper state for processing.

• Presentation — The presentation layer uses the data in the business
objects to display information on a Web site. Any user input actions are
validated in the objects and, if needed, callbacks to the middle layer occur
to retrieve updates based on the user input.

Dealing with MATLAB data is, for the most part, no different then dealing
with other Web data except for the fact that dynamically generated images
may be involved. The examples in this document are not meant to show how
to build a Web site, but rather to demonstrate what types of building blocks
are needed to work with MATLAB data in an existing Web site. Most of these
examples can be integrated directly into larger applications containing JSP,
HTML, or ASPX code.

Surf Peaks and Magic Square Application Integration

The two templates in Surf Peaks and Magic Square Application Integration
on page 5-4 show how applications built with MATLAB products can be

5-4

Working With the Front End Layer

integrated into a larger application. In each case, there is a small area in the
interface where our applications exist after the user enters input (if only a
mouse click).

In the left template, it is possible to have a simple IMG tag, where the src=
is a Servlet from the middle tier that dumps out the image data. it is also
possible to use an interactive AJAX component embedded in a sub frame, or
to use embedded Web Figures.

In the right template, clicking the go button triggers the page to validate that
the value in the input box is valid, and then sends that data off to the middle
tier service which returns a two dimensional array. It is the front end layer’s
job to format this data and present it properly.

In the examples which follow, these concepts will be simplified and focus on
how the communication occurs within the middle layer, and how some typical
data translations are performed.

Creating a Web Figure On a JSP Page
There are several ways to utilize Web Figures on a Web page with Java:

• Return a special HTML string from the Servlet which embeds the Web
Figure into a page.

• Using the custom Web figure tag library directly from the JSP. have the
Servlet bind the Web Figure and redirect it to the JSP.

• Generate a string from the middle tier that can be dumped directly onto a
Web page at the front end, embedding all of the Web figures functionality
and the correct call backs directly into the front end page.

In each case, the Web Figure object is stored in the Web server’s session. The
Java script that executes the client side calls back to the server for updates
and, using the cached Web figure, new updates are sent back to the client.

Using an HTML String

This example is very similar to what can be found in “Deploying a Java™
Component Over the Web”, but this example also uses our DAO. The middle

5-5

5 Front End Developer Tasks

tier code featured in “Hosting the DAO With a Servlet” on page 4-20 is
repeated here:

HttpSession session = request.getSession();

WebFigure userPlot = (WebFigure)session.getAttribute("UserPlot");

// if this is the first time doGet has been called for this session,
// create the plot and WebFigure object
if (userPlot== null)
{
userPlot = examples.getWebFigureFromMWJavaObjectRef();

// store the figure in the session context
session.setAttribute("UserPlot", userPlot);

// bind the figure's lifetime to the session
session.setAttribute("UserPlotBinder",

new MWHttpSessionBinder(userPlot));
}

Using the Webfigure Tag Library

To use the Web Figure object directly from a JSP page, reference the
webfigures tag library. This creates a Web Figure object with your object’s
parameters. The UserPlot is the name of the Web Object that was placed in
the cache by the middle tier.

Note The middle tier and the JSP must be hosted on the same server.

<%@ taglib prefix="wf" uri="/WEB-INF/webfigures.tld" %>

<wf:web-figure name="UserPlot"
scope="session"
root="WebFigures"

width="100%"
height="100%"/>

5-6

Working With the Front End Layer

When using this approach, the only other code needed on the Servlet side is a
redirect back to the JSP that the above code resides on. In this example, this
code is contained in response.jsp. The Servlet code would look like this:

RequestDispatcher dispatcher =
request.getRequestDispatcher("/response.jsp");
dispatcher.forward(request, response);

Using Embedded HTML

This option is convenient since all of the “heavy lifting” is done on the server
and only a string is sent to the front end. In this example, notice how the
Servlet is merely referenced and dumps the contents into a Web page frame.

Note This technique can be used regardless of the transfer protocol or
location of the front end or back end. Since a simple string is being sent,
the front end can be coded in a number of ways, adapting nicely to a SOAP
transfer, for example.

<iframe
src ="http://localhost:8080/Examples/ExamplesServlet?

function=webFigureEmbedded"
width="590"
height="480">

</iframe>

To generate this string, run code similar to this on the Servlet:

WebFigures webfigures =
new WebFigures("WebFigures", getServletContext());

String embeddedString;
try
{
//This generates a string that can be sent to the
// response that represents the web figure.
embeddedString =
webfigures.getHtmlEmbedString(userPlot,

5-7

5 Front End Developer Tasks

"UserPlot",
"session",
null,
null,
null);

}
catch(MWException mwe)
{
throw new Exception();

}

response.getOutputStream().println(embeddedString);

Working With Static Images
There are several options when dealing with images through a component.

You can simply save the image from the M-code to a drive somewhere using
print functionality (the front end references the physical file directly). This is
not ideal since the middle tier is behind the firewall (and the front end is in
front of it), incurring possible security concerns with where the files reside.

Using Java, you can return a Java image object from M and use it directly
from the JSP or Servlet by saving it to disk or converting it to a byte stream.

Using a Static Image In a JSP Page

The simplest option is to return a data stream from your M function as a byte
array — an encoded representation of your image, a common paradigm used
when storing and retrieving images from a database. However, it is important
to consider that only an IMG tag’s source can be set, not it’s data. The most
common solution to this issue is to have the IMG tag’s source reference a
Servlet that streams the bytes out through the output stream. Although
direct communication between a presentation object and the middle tier
usually isn’t recommended, in this case it is a good solution. A common
implementation is to designate a server that only serves up images, keeping
data services and image services separate, as shown here:

<img src="http://localhost:8080/Examples/ExamplesServlet?function=
imageBytesFromMWNumeric" alt="MATLAB IMAGE" />

5-8

Working With the Front End Layer

Using a Static Image In a ASPX Page

Using ASPX Image objects is almost identical to using HTML IMG tags. In
this case, simply set the ImageUrl (the source of image) to be the ASPX page
created in “Deploying the ASPX” on page 4-34. You can also point to a Java
middle tier Servlet that hosts the image.

<asp:Image
ID="Image1"
runat="server" ImageUrl=

"http://localhost/Examples/Tester.aspx?function=
imageBytesFromMWNumeric" />

Interacting With Images Using JavaScript (For .NET or Java)

Although “Creating a Web Figure On a JSP Page” on page 5-5 is a good
solution for most component models, sometimes a lightweight solution is
needed that may be customized for specific tasks.

JavaScript can be employed to dynamically request new images depending
on user input. Since JavaScript is not Java, it does not require that Java
Runtime be installed. JavaScript runs in a client’s browser and does not
require a Java Web server. You can use this lightweight implementation
with any of the builders. This example uses the Raw Image Bytes With
Reorientation example in “Hosting the DAO With a Servlet” on page 4-20 and
. It waits for the user to instigate a movement with the mouse (a mouse-drag
“event”) and, when the events occur, calls the server to get a new image of the
new orientation. This example, while simple, can be extended to do many
other types of image interactions.

<iframe
src ="DynamicFigure.html?url=

http://localhost:8080/Examples/ExamplesServlet?function=
imageBytesFromMWNumericWithOrientation"

width="700"
height="700">

</iframe>

DynamicFigure.html is an AJAX application that takes in a parameter (the
base function that returns an image) and accepts different orientation values:

5-9

5 Front End Developer Tasks

<%@ page contentType="text/html;charset=UTF-8" language="java" %>
<%@ page isELIgnored ="false"%>
<html>
<head>
<title>AJAX Figure Manipulation</title>
<script type="text/javascript">
var rotationDegree = 0;
var elevationDegree = 0;
var startDragX = 0;
var startDragY = 0;
var mouseisdown = false;

function getParam(name)
{

var start=location.search.indexOf("?"+name+"=");
if (start<0) start=location.search.indexOf("&"+name+"=");
if (start<0) return '';
start += name.length+2;
var end=location.search.indexOf("&",start)-1;
if (end<0) end=location.search.length;
var result='';
for(var i=start;i<=end;i++) {

var c=location.search.charAt(i);
result=result+(c=='+'?' ':c);

}
return unescape(result);

}

function updateView()
{
var urlStr = getParam("url") +"&" +

"imageFormat=png" + "&" +
"rotation=" + rotationDegree + "&" +
"elevation=" + elevationDegree + "&" +

"width=" + contentBox.clientWidth + "&" +
"height=" + contentBox.clientHeight;

var requestedImage = document.getElementById('currentImage');

5-10

Working With the Front End Layer

requestedImage.src = urlStr;
requestedImage.style.visibility = 'visible';

}

function stopDragging(updateX,updateY)
{
rotationDegree += Math.round(((startDragX - updateX)/2)%360);
elevationDegree += Math.round(-(startDragY - updateY)/2);
updateView();

}
</script>

</head>

<body onresize='updateView();'>
<form name=exf1>
X Drag <input type=text name=x value="0">
Y Drag <input type=text name=y value="0">

</form>

<div style='position:absolute; background:
url("matlab.gif"); left:0; right:0;

width:100%; height:100%;'>
<img style="visibility: hidden; position:absolute;

width:100%; height:100%; left:0;
top:0" src="matlab.gif"

id="currentImage">
</div>

<div id='contentBox'
style='position:absolute; background: url("transparent_pixel.gif");
left:0; top:0; background-color: <%= request.getParameter("color") %>;
width:100%; height:100%; overflow:hidden;'

onmousedown="mouseisdown = true; startDragX=event.clientX;
startDragY=event.clientY;"

onmouseup="mouseisdown =
false;stopDragging(event.clientX, event.clientY);
document.exf1.x.value=0; document.exf1.y.value=0;"

onmousemove="if(mouseisdown)
{document.exf1.x.value=event.clientX-startDragX;
document.exf1.y.value=event.clientY-startDragY;}">

5-11

5 Front End Developer Tasks

</div>
<script type="text/javascript">
updateView();

</script>
</body>

</html>

Displaying Complex Data Types Including Arrays
and Matrices
You typically translate raw matrix array data to a form of displayable output.
This section provides examples using Java and .NET.

Working With JSP Page Data

In this example, a two dimensional array (the output of a magic square, for
example) is converted to an HTML table from a JSP page. This example
assumes you have gotten the data from the middle tier and have converted it
back to an array.

<table border=0 cellpadding=4 cellspacing=4 style='margin: 16px;'>
<%

double[][] square = getMatrix();
for (double[] row : square)

{
pageContext.getOut().print("<tr>");

for(double value : row)
{

pageContext.getOut().print("<td>" + (int)value + "</td>");
}
pageContext.getOut().print("</tr>");

}
%>

Working With ASPX Page Data

The following examples use basic ASPX pages and can be incorporated into a
large enterprise site.

5-12

Working With the Front End Layer

The easiest way to output a matrix is to iterate the array and then convert
it into an HTML table. Unfortunately, this approach is not maintainable for
large volumes of data, but is worth exploring in this example, assuming you
have communicated with the middle tier and received a two dimensional
array of data. Assuming you have a label on the ASPX page called MatrixLbl,
here is the code to output the matrix:

int size = 5;
double[][] magicSquare = getMagicSquare(size);

String temp = "";
temp +="<table border=0 cellpadding=4

cellspacing=4 style='margin: 16px;'>";

for (int i = 0; i < size; i++)
{

temp += "<tr>";
for (int j = 0; j < size; j++)
{
temp += "<td>" + magicSquare[i][j] + "</td>";

}
temp += "</tr>";

}
MatrixLbl.Text = temp;

Using ASP.NET To Integrate With WYSIWYG Controls

ASP.NET provides a number of streamlined methods to place a grid of data
on a Web page, such as mapping the data into a DataTable and referencing
the DataTable from an ObjectDataSource’s Select method. By choosing
this option, you promote reuse and also maintain separation between the
application’s visualization and logic.

You must first place a GridView onto a page, and then “bind” it to a data
source. By using an Object data source, you allow an object to dynamically get
the data from some location (like a middle tier), and put it into a DataTable.
Once this is done, the GridView will automatically display it.

Here is an example of using the Select method in your business object:

5-13

5 Front End Developer Tasks

public DataTable getMagicSquare(int size)
{

//Gets the matrix from the web service.
double[][] magicSquare = getMatrix(size);

//Create an empty data table to put the matrix data in.
DataTable table = new DataTable();

//Since we know its a square add as many
// columns as there will be rows.
for(int i = 0; i<size; i++)
{

table.Columns.Add();
}

DataRow row;
//Iterate each element in the array creating a row out of each
for(int i = 0; i < size;i++)
{

//create a row from the table to put the data in
row = table.NewRow();
//Iterate each element in the inner array and put
// them into the row
for (int j = 0; j < size; j++)
{

row[j] = magicSquare[i][j];
}

//Add the row to the table
table.Rows.Add(row);

}
return table;

}

Working With ASP.NET Using the Visual Studio Wizard

This section demonstrates how to perform the implementation described in
“Working With ASP.NET” when using Visual Studio’s wizards and a typical
Web page application. Perform the following steps to set up the data source,

5-14

Working With the Front End Layer

bind it to a load method, and bind the method’s input parameter to the text
box.

Below is an input text box and a generic grid component from a Web page.
The grid component is connected to the ObjectDataSource.

Input Text Box and Grid Component

1 Start Visual Studio and configure the data source with the wizard.

2 Choose the business class that contains your methods for the object:

5-15

5 Front End Developer Tasks

5-16

Working With the Front End Layer

3 Select the method that returns a data table containing the data to display:

5-17

5 Front End Developer Tasks

4 Since the method requires an input, bind it to the control that contains the
value and set the default:

The finished application looks like this:

5-18

Working With the Front End Layer

The Build Square button reselects the grid data.

Using Web Services
In Chapter 4, “Business Service Developer Tasks”, we exposed several
methods as SOAP Web services. To use these methods from the front end, add
a reference to them in your Visual Studio project by adding a Web Reference:

1 In Visual Studio, right-click on the project name and select Add Web
Reference.

2 In the URL field, enter the path to your WSDL.

3 Click Go. The resulting dialog should look something like this:

5-19

5 Front End Developer Tasks

Notice how all of the methods exposed earlier are displayed.

4 To add these methods to your project, click Add Reference.

5 To use any of the methods, instantiate the Web service by executing code
similar to:

localhost.ExamplesWebService webService =
new localhost.ExamplesWebService();

Access any of the methods on the web service as you would any other .net
object. Here are some examples:

int intValue = webService.getInt();
string stringValue = webService.getString();
double[] doubleArray = webService.getDoubleArray();
double[][] magicSquare = webService.getDoubleMatrix(size);
char[] charArray = webService.getCharArray();

5-20

Working With the Front End Layer

byte[] bytesArray = webService.getByteArray();
byte[] imageByteArray = webService.getImageBytesArray();
byte[] imageByteArrayWithOrientation =
webService.getImageByteArrayWithOrientation(500,

500, 20, 30, "png");

Displaying Web Services Images and Data In PHP

If your installation has a strong investment in PHP front ends, consider using
them to display Web Services running MATLAB applications.

As long as your business tier services output data in a generic non language
specific manner (as most of the examples in this document support) you can
embed that output within any Web front end. This example demonstrates how
to use SOAP Web services to embed an image onto a PHP page:

//References a soap library and loads the WSDL.
include("lib/nusoap.php");
$soapclient = new soapclient
('http://localhost:3465/SurfPeaksWebServiceServer/Service.asmx?WSDL',

true);

//If we had any parameters to pass
// we would add them to this array.
$params = array();

//Calls the service with the parameters.
$result = $soapclient -> call("SurfPeaksWebService", $params);

//Gets the encoded responce out of the result object.
$base64EncodedResult = $result["SurfPeaksWebServiceResult"];
//Decodes and displays the result.
echo base64_decode($base64EncodedResult);

//Unloads the soap client.
unset($soapclient);

You can use this technique to access data services, as well:

5-21

5 Front End Developer Tasks

1 Install PHP 5.2.3 into IIS 5, if needed (the installer lets you specify the
server type).

2 Download NUSOAP and place it on the instance path (somewhere the
include command can see it)

You should be able to use any SOAP add-in. However, note that the call
syntax may change slightly. Consult the add-in documentation for further
information.

5-22

http://sourceforge.net/projects/nusoap/

6

Internal Analyst Tasks

Working With the Content (p. 6-2) The role of the Internal Analyst
and common workflows which they
perform

Examples of Internal Analyst Tasks
(p. 6-3)

Examples of common Internal
Analyst tasks

6 Internal Analyst Tasks

Working With the Content

Employer of the company

User of tools and sites

Internal
Analyst

Internal user over the network

Little to no MATLAB or IT experience

Internal Analyst access the business logic through tools such as Microsoft™
Excel or a Web page on the front-end tier. The end user sees only the resulting
data and has no need (or need to know) the implementation used to create it.

6-2

Examples of Internal Analyst Tasks

Examples of Internal Analyst Tasks
The example in this section consumes the .NET Web service created in
“Deploying the Web Service” on page 4-37. Using this type of application, you
can use the same Web service to display many different front ends. You can
use data stored in Microsoft Excel and pass it to a Web service to generate
dynamic data driven images.

A Microsoft Excel Web Service Client Standalone .NET Application

To construct a Microsoft Excel interface to the Web service, do the following:

1 Download and Install the Microsoft Office Web Service Toolkit from
Microsoft, if you haven’t already.

2 Start Microsoft Excel.

3 Open a new worksheet.

4 Using the Control Toolbox, create an Excel graphics window by dropping
and dragging an Image.

5 Drag a Command Button into the window. This button will be used to
trigger the Web service call and load the graphic. At this stage, the window
looks like this:

6-3

http://www.microsoft.com/Downloads/Search.aspx?displaylang=en

6 Internal Analyst Tasks

6 Double-click the Command Button button and the VBA editor starts.

7 Select Tools > Web Service References...

Note The Web Service References... option is only available if you install
the Microsoft Office Web Service Toolkit.

8 In Web Service URL, type the WSDL that we referenced in “Using Web
Services” on page 5-19:

http://localhost:3465/SurfPeaksWebServiceServer/Service.asmx?WSDL

6-4

Examples of Internal Analyst Tasks

9 Click Search to query the Web service. The result will look like this:

10 Select the appropriate service in the Search Results pane and click Add
to bind it to your project. Notice that a Class Module is created called
clsws_Service. This module will be used by the button action to retrieve
the data.

11 In the worksheet, for the method CommandButton1_Click(), add and save
the following code:

Sheet1.Image1.Picture = Nothing

Dim value() As Byte
Set module = New clsws_Service
value = module.wsm_SurfPeaksWebService

'Saves byte() data from web service to a file
Dim intFileNumber As Integer
intFileNumber = FreeFile
Open "c:\temp1.png" For Binary As #intFileNumber
Put intFileNumber, , value
Close #intFileNumber

6-5

6 Internal Analyst Tasks

'Loads the saved picture into the image
Sheet1.Image1.Picture = LoadPicture("c:\temp1.png")

12 Click the command button and the following image appears in the graphics
pane of your worksheet:

Note You may need to close Microsoft Excel and reopen it to see the
graphic.

6-6

A

Sources for More
Information

Other Examples (p. A-2) Links more for information about
the tools and concepts in this guide

A Sources for More Information

Other Examples
Use these links for more information on other Web examples of possible
interest:

MATLAB® Builder™ JA
Other examples using MATLAB® Builder™ JA include:

Black Shoals
MATLAB Central Black Shoals Web Demo For Java

Web Figures
MATLAB Builder JA Web Figures Varargs Demo

MATLAB® Builder™ NE
Other examples using MATLAB Builder NE include:

Black Shoals
MATLAB Central Black Shoals Web Demo For .NET

A-2

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12099&objectType;=file
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=16635&objectType;=file
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=12098&objectType;=file

Index

IndexB
business service layer 4-2

D
DAO 4-5

Hosting
Using a .NET Web Service 4-34
Using a Java Web Service 4-26

Hosting On a Web Server 4-20
Initializing

For a Servlet 4-21
Initializing the

with ASPX 4-31
Interacting with 4-32 4-34

in Java 4-27
Using an HTML String 5-5

F
front end layer 5-2

N
NUSOAP

Download location 5-22
NUSOAP PHP class add-in 1-5

S
SOAP 4-26

SOAP Web services
As part of data access in front-end layer 5-4
As part of interfaces in business service

layer 4-2
Using Embedded HTML with 5-7
Using To embed an image on a PHP

page 5-21
Using Web references with 5-19

SOAP Web Services 1-2

W
Web Figures 2-2 4-5

and MATLAB figures 3-3
Deploying a Java component 4-24
Example

using a DAO 4-24
Getting image data from a Web figure

Java component 4-17
Getting images from a Java component

using 4-16
JSP page 5-5
Other examples of A-2
Returning a figure as data 3-4
Returning data from a Web Figure

Window 3-3
Use in AJAX component 5-5
Using directly from JSP

Using tag library 5-6

Index-1

	toc
	How to Use This Guide
	About This Guide
	Who Should Use This Guide?
	List of Commonly Used Software and Preliminary Set-Up Informatio
	MATLAB Programmer
	Intergration Experts (Business Service Developer and Front-End D
	Internal Analyst

	Anatomy of a MATLAB Web Application
	The MATLAB Web Application Environment
	The Lifecycle Of a Deployed MATLAB Web Application
	The MATLAB Programmer
	The Business Service Developer
	The Front-End Developer
	The Internal Analyst

	MATLAB Programmer Tasks
	Programming in MATLAB
	Creating a Deployable MATLAB Function
	Taking Inputs Into a Function
	Returning Data Types
	MATLAB Figures
	Returning Data From a Web Figure Window
	Returning a Figure as Data
	Reorienting a Figure and Returning It as Data

	Deploying MATLAB Code With the Builders

	Business Service Developer Tasks
	Working with the Business Service Layer
	About the Business Service Layer
	Creating a DAO For Deployment
	Initializing a Component
	Java
	.NET
	Interacting With a Component
	Converting an Integers To a MATLAB Data Type In Java
	Converting an Integers To a MATLAB Data Type In .NET
	Converting Array Data To a MATLAB Data Type In Java
	Converting Array Data To a MATLAB Data Type In .NET
	Converting a List To a MATLAB Data Type In Java
	Converting a List To a MATLAB Data Type In .NET
	Converting a Maps (Name Value Pairs) To a MATLAB Data Type In Ja
	Converting a Dictionaries (Name Value Pairs) To a MATLAB Data Ty
	Getting Numerics From a Java Component
	Getting Numerics From a .NET Component
	Getting Strings From a Java Component
	Getting Strings From a .NET Component
	Getting Numeric Arrays From a Java Component
	Getting Numeric Arrays From a .NET Component
	Getting Character Arrays From a Java Component
	Getting Character Arrays From a .NET Component
	Getting Byte Arrays From a Java Component
	Getting Byte Arrays From a .NET Component
	Getting Cell Arrays From a Java Component
	Getting Cell Arrays From a .NET Component
	Getting Structures From a Java Component
	Getting Structures From a .NET Component
	Getting Images From a Java Component Using Web Figures
	Getting Image Data From a Web Figure In a Java Component
	Getting Raw Image Bytes From an Image In a Java Component
	Getting Raw Image Bytes From an Image In a .NET Component
	Getting a Java Buffered Image In a Java Component
	Getting a .NET Image In a .NET Component

	Hosting a DAO On a Web Server
	Hosting the DAO With a Servlet
	Initializing the DAO For a Servlet
	Numeric
	String
	Numeric Array
	Character Array
	Cell Array To Array
	Cell Array To List
	Structure To Map
	Byte Array
	Images (Web Figures)
	Web Figure To Bytes
	Raw Image Bytes
	Raw image Bytes With Reorientation
	Example of a web.xml File Used In a Java Servlet Component
	Hosting a DAO Using a Java Web Service
	Numeric
	String
	Numeric Array
	Character Array
	Byte Array
	Raw Image Bytes
	Raw Image Bytes With Reorientation

	Hosting a .NET DAO With ASPX
	Numeric
	String
	Double Array
	Character Array
	Cell Array To Array
	Cell Array To List
	Structure
	Byte Array
	Raw Image Bytes
	Raw Image Bytes With Reorientation

	Hosting a DAO Using a .NET Web Service
	Numeric
	String
	Double Array
	Double Matrix
	Character Array
	Byte Array
	Raw Image Bytes
	Raw Image Bytes With Reorientation

	Front End Developer Tasks
	Working With the Front End Layer
	Creating a Web Figure On a JSP Page
	Using an HTML String
	Using the Webfigure Tag Library
	Using Embedded HTML
	Working With Static Images
	Using a Static Image In a JSP Page
	Using a Static Image In a ASPX Page
	Interacting With Images Using JavaScript (For .NET or Java)
	Displaying Complex Data Types Including Arrays and Matrices
	Working With JSP Page Data
	Working With ASPX Page Data
	Using ASP.NET To Integrate With WYSIWYG Controls
	Working With ASP.NET Using the Visual Studio Wizard
	Using Web Services
	Displaying Web Services Images and Data In PHP

	Internal Analyst Tasks
	Working With the Content
	Examples of Internal Analyst Tasks
	A Microsoft Excel Web Service Client Standalone .NET Application

	Sources for More Information
	Other Examples
	MATLAB ® Builder JA
	Black Shoals
	Web Figures

	MATLAB ® Builder NE
	Black Shoals

	Index

